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The primary objective of damage detection is to ascertain with confidence if damage is present or not

within a structure of interest. In this study, a damage classification problem is cast in the context of the

statistical pattern recognition paradigm. First, a time prediction model, called an autoregressive and

autoregressive with exogenous inputs (AR-ARX) model, is fit to a vibration signal measured during a

normal operating condition of the structure. When a new time signal is recorded from an unknown state

of the system, the prediction errors are computed for the new data set using the time prediction model.

When the structure undergoes structural degradation, it is expected that the prediction errors will

increase for the damage case. Based on this premise, a damage classifier is constructed using a

sequential hypothesis testing technique called the sequential probability ratio test (SPRT). The SPRT

is one form of parametric statistical inference tests, and the adoption of the SPRT to damage detection

problems can improve the early identification of conditions that could lead to performance degradation

and safety concerns. The sequential test assumes a probability distribution of the sample data sets,

and a Gaussian distribution of the sample data sets is often used. This assumption, however, might

impose potentially misleading behavior on the extreme values of the data, i.e. those points in the tails

of the distribution. As the problem of damage detection specifically focuses attention on the tails, the

assumption of normality is likely to lead the analysis astray. To overcome this difficulty, the

performance of the SPRT is improved by integrating extreme values statistics, which specifically

models behavior in the tails of the distribution of interest into the SPRT.

Keywords damage detection � time series analysis � sequential probability ratio test � extreme

value statistics � statistical pattern recognition � vibration test

1 Introduction

The most primary goal of structural health mon-

itoring and damage detection is simply to identify

from measured data if a structure of engineering

interest has deviated from a normal operational

condition. In particular, vibration-based damage

detection techniques assume that changes of

the structure’s integrity affect characteristics of

the measured vibration signals enabling one to

detect damage. The area of structural health

monitoring that receives the most attention in the

technical literature is feature extraction (Doebling

et al., 1998). Feature extraction is the process of

identifying damage-sensitive properties, derived

*Author to whom correspondence should be addressed.

E-mail: sohn@lanl.gov

Copyright � 2003 Sage Publications,

Vol 2(1): 0057–74

[1475-9217 (200303) 2:1;57–74; 10.1177/147592103031113]

Copyright � 2003 Sage Publications,

Vol 2(1): 0057–74

[1475-9217 (200303) 2:1;57–74; 10.1177/147592103031113]

www.sagepublications.com


from the measured vibration response, which

allows one to distinguish between the undamaged

and damaged states of the structure. On the other

hand, the least attention is paid to the develop-

ment of statistical inference tools to enhance the

actual damage classification process. A statistical

inference is concerned with the implementation of

the algorithms that operate on the extracted fea-

tures to quantify the damage state of the structure.

In this paper, a unique combination of time

series analysis, statistical pattern recognition tech-

niques, and extreme value statistics is presented to

automate the damage identification procedure

with special attention to statistical inference for

decision-making. The structure of this paper is as

follows. Section 2 briefly reviews the time series

analysis of vibration signals using the auto-

regressive and autoregressive with exogenous

inputs (AR-ARX) model. Section 3 outlines the

main theory of the sequential probability ratio test

(SPRT), and Section 4 incorporates extreme value

statistics to the SPRT. The SPRT is applied to

numerical and experimental data in Sections 5 and

6, respectively. Section 7 concludes and sum-

marizes the findings of this study.

2 Time Series Analysis

The time series analysis begins with the assump-

tion that a ‘‘pool’’ of signals is acquired from a

system with a known structural condition. In the

experimental example reported later on, multiple

time series are recorded from the undamaged

structure. The collection of these time series is

called the ‘‘reference database’’ in this study. The

construction of this reference database is shown

to be useful for normalizing data with respect to

varying operational and environmental condi-

tions. The applications of this time series analysis

to data normalization are presented in Sohn and

Farrar (2001) and Sohn et al. (2001).

A linear prediction model combining autore-

gressive (AR) and autoregressive with exogenous

inputs (ARX) models is employed to compute the

damage-sensitive feature. In this case, the

damage-sensitive feature is the standard deviation

of the residual error between the prediction

model and measured time series.

First, all time signals are standardized prior

to fitting an AR model such that;

x̂x ¼
x� �x
�x

ð1Þ

where x̂x is the standardized signal, �x and �x are

the mean and standard deviation of x, respec-

tively. This standardization procedure is applied

to all signals employed in this study. However,

for simplicity, x is used to denote x̂x hereafter.

For each time series xðtÞ in the reference

database, an AR model with r autoregressive

terms is constructed. An AR(r) model can be

written as (Box et al., 1994):

xðtÞ ¼
Xr
j¼1

�xj xðt� jÞ þ exðtÞ ð2Þ

This step is repeated for all signals in the

reference database.

Employing a new segment yðtÞ obtained from

an unknown structural condition of the system,

repeat the previous step. Here the new segment

yðtÞ has the same length as the signal xðtÞ:

yðtÞ ¼
Xr
j¼1

�yj yðt� jÞ þ eyðtÞ ð3Þ

Then, the signal segment xðtÞ ‘‘closest’’ to the new

signal block yðtÞ is defined as the one that mini-

mizes the following difference of AR coefficients:

Difference ¼
Xr
j¼1

ð�xj � �yjÞ
2

ð4Þ

This ‘‘data normalization’’ is a procedure to

select the previously recorded time signal from

the reference database, which is recorded under

operational and/or environmental conditions

closest to that of the newly obtained signal. If

the new signal block is obtained from an opera-

tional condition close to one of the reference

signal segments and there has been no structural

deterioration or damage to the system, the

dynamic characteristics (in this case, the AR

coefficients) of the new signal should be similar
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or close to those of the reference signal based on

the Euclidean distance measure in Equation (4).

When a time prediction model is constructed

from the selected reference signal, this prediction

model should be able to appropriately predict the

new signal if the new signal is ‘‘close’’ to the

reference signal. On the other hand, if the new

signal were recorded under a structural condition

different from the conditions where the reference

signal was obtained, the prediction model esti-

mated from even the ‘‘closest’’ signal in the

reference database would not reproduce the new

signal well.

The prediction capability of an AR model

can be examined by computing the standard

deviation of the prediction error exðtÞ. If the

dynamic characteristics of a time series xðtÞ can

be well represented by the AR model, the

standard deviation of the associated prediction

error exðtÞ should be relatively small. In fact, it is

recommended to keep the standard deviation of

the prediction errors less than 10% of the

standard deviation of the original signal xðtÞ.

This condition implies that the AR model is able

to capture more than 90% of the underlying

dynamics of the system, and the prediction error

makes up the remaining uncertainties of the

signal dynamics. For the experimental study

presented later, it turns out that the standard

deviation of the prediction error ranges around

30–40% of the standard deviation of the original

time signal indicating that the AR model is not

capable of predicting the time signal properly.

To overcome this problem, a two-step predic-

tion model called AR-ARX model is employed in

this study. Other applications of this AR-ARX

model are presented in Sohn and Farrar (2001)

and Sohn et al. (2001). For the construction of a

two-stage prediction model, it is assumed that the

error between the measurement and the predic-

tion obtained by the AR model [ex(t) in Equation

(2)] is mainly caused by an unknown external

input. Based on this assumption, an ARX model

is employed to reconstruct the input/output

relationship between exðtÞ and xðtÞ;

xðtÞ ¼
Xp
i¼1

�ixðt� iÞ þ
Xq
j¼1

�jexðt� jÞ þ "xðtÞ ð5Þ

where "xðtÞ is the residual error after fitting the

ARX( p, q) model to exðtÞ and xðtÞ pair. The

feature for damage diagnosis will later be related

to this quantity "xðtÞ. Note that this AR-ARX

modeling is similar to a linear approximation

method of an autoregressive moving-average

(ARMA) model presented in Ljung (1987) and

references therein. Ljung (1987) suggested keeping

the sum of p and q smaller than r ðpþ q � rÞ.

Although the p and q values of the ARX model

are set rather arbitrarily, similar results are obtained

for different combinations of p and q values as

long as the sum of p and q is kept smaller than r.

Next, it is investigated how well this

ARX( p, q) model estimated in Equation (5)

reproduces the input/output relationship of eyðtÞ

and yðtÞ;

"yðtÞ ¼ yðtÞ �
Xp
i¼1

�iyðt� iÞ �
Xq
j¼1

�jeyðt� jÞ ð6Þ

where eyðtÞ is considered to be an approximation

of the system input estimated from Equation (3).

Note that the �i and �j coefficients are associated

with xðtÞ and obtained from Equation (5). If the

ARX model obtained from the reference signal

block xðtÞ and exðtÞ pair were not a good

representative of the newly obtained signal seg-

ment yðtÞ and eyðtÞ pair, there would be a

significant change in the standard deviation of

the residual error "yðtÞ compared to that of "xðtÞ.
Therefore, the standard deviation of the residual

error is defined as the damage-sensitive feature

and the increase of this standard deviation is

monitored using the following SPRT.

3 Damage Classification Using
Sequential Probability Ratio Tests

The SPRT procedure is particularly relevant if

the data are collected sequentially (Wald, 1947).

Examples of such sequential collection include

failures on a production line, patient throughput

in a hospital or relapses in behavioral interven-

tions. Sequential analysis is different from classi-

cal hypothesis testing where the number of samples

tested or collected is fixed at the beginning of the

Sohn, Allen,Worden, & Farrar Statistical Damage Classification Using SPRTs 59



experiment. In classical hypothesis testing the

data collection is executed without analysis and

consideration of the data. After all data are

collected, the analysis is done and conclusions are

drawn. However, in sequential analysis every data

point is analyzed directly after being collected,

the data collected up to that moment are then

compared with threshold values, incorporating

the new information obtained from the freshly

collected case. This approach allows one to draw

conclusions during the data collection, and a final

conclusion can possibly be reached at a much

earlier stage than in the case of classical hypoth-

esis testing. The advantages of sequential analysis

are easy to see. As data collection can be

terminated after fewer samples and decisions

drawn earlier, the savings in terms of human life

and misery, and financial savings might be

considerable. Particularly, the framework of this

sequential analysis suits the paradigm of contin-

uous structural health monitoring very well.

3.1 Sequential Test

A sequential statistical inference starts with the

accumulation of a sequence of random variables

fxigði ¼ 1, 2, . . .Þ. This accumulated data set at

stage n is denoted as:

Xn ¼ ðx1, . . . xnÞ ð7Þ

For the experimental study presented later, this

accumulated data set will be a collection of the

residual errors computed from the AR-ARX

model presented in the previous section. The goal

of a statistical inference is to reveal the prob-

ability model of Xn, which is assumed to be at

least partially unknown. When the statistical

inference is cast as a parametric problem, the

functional form of Xn is assumed to be known

and the statistical inference poses some questions

regarding the parameters of the probability

model. For instance, if fxig are independent and

identically distributed (i.i.d) normal variables, one

may pose some statistical test about the mean

and/or the variance of this normal distribution.

A sequential test is one of the simplest tests

for such a statistical inference where the number

of samples required before reaching a decision is

not determined in advance. An advantage of the

sequential test is that on an average a smaller

number of observations is needed to make a

decision compared to the conventional fixed-

sample size test. First, a simple hypothesis test

containing only two distinct distributions is con-

sidered. Here, the interest is in discriminating two

simple hypotheses;

Ho : � ¼ �o, H1 : � ¼ �1, �o 6¼ �1 ð8Þ

where � is a particular parameter value in ques-

tion, and it is assumed that � can take either �o
or �1 only. In general, � can be a vector of

multiple parameters. However, � is assumed to be

a single parameter for the sake of simplicity in

this study. When a sequence of observations fxig

is available, the purposes of any sequential test

for the above hypotheses are (1) to reach the

correct decision about Ho with the least prob-

ability of Type I and II errors, (2) to minimize

the sampling number before the correct decision

is made, and (3) to eventually terminate with

either the acceptance or rejection of Ho as the

sampling size n increases. Here, Type I error

arises if Ho is rejected when in fact it is true.

Type II error arises if Ho is accepted when it is

false. When a sequential test satisfies the last

condition, the test is defined closed. Otherwise,

an open test may continue infinitely observing

data without reaching any terminal decision

about Ho.

It turns out that the simultaneous achieve-

ment of all three goals is impossible by any tests.

Therefore, a reasonable compromise among these

conflicting goals needs to be achieved. For the

well-established fixed-sampling test, the sample

size n is fixed, and an upper bound on the Type I

error is prespecified. Then, an optimal fixed-

sample test is selected by minimizing the prob-

ability of Type II error. On the other hand, a

sequential test specifies upper bounds on the

probabilities of Type I and II errors and

minimizes the following average sample number,

Eðnj�Þ;

Eðnj�Þ ¼
X1
n¼1

nPðnj�Þ ð9Þ
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where Pðnj�Þ is the probability mass function of n

when � is the true value of the parameter. That is,

a sequential test attempts to minimize the sample

number needed to make a decision in an average

sense. Note that, when a sequential test is closed,

Pðn < 1j�Þ ¼ 1 for � ¼ �o or �1. This means that

any closed sequential test will be eventually termi-

nated as the sample size increases.

There exists a class of valid sequential tests,

which satisfy the following criteria (Ghosh, 1970):

ð1Þ the test is closed;

ð2Þ 1�Qð�Þ � �, for � ¼ �0;

ð3Þ Qð�Þ � �, for � ¼ �1:

ð10Þ

where � and � are the preassigned Type I and II

errors, respectively. Qð�Þ is the probability that

any sequential test accepts Ho as n! 1. In

other words,

Qð�Þ ¼
X1
n¼1

Z
Xn 2Ron

f ðXnj�ÞdXn ð11Þ

where f ðXnj�Þ is the conditional probability den-

sity function of observing the accumulated data

set Xn given the assumption of �. The integral in

Equation (11) is evaluated over the acceptance

region of Ho ðXn 2 R
o
nÞ. The second criterion in

Equation (10) states that for all values of n, the

true Type I error, 1�Qð�oÞ, should be less than

the preassigned risk �. In a similar fashion, the

third criterion indicates that the true Type II

error Qð�1Þ should be less than �.
Among various valid sequential tests, it can

be analytically proven that the SPRT minimizes

the average sample number required to make a

correction rendering this test an optimal sequen-

tial test (Ghosh, 1970). Because of this extreme

sensitivity of the SPRT to signal disturbance, the

SPRT has been applied for the surveillance of

nuclear power plant components (Humenik and

Gross, 1990; Gross and Humenik, 1991).

When implementing the SPRT, a trade-off

must be considered before assigning values for �
and �. When there is a large penalty associated

with false positive alarms (for example, alarms

that shut down traffic over a bridge), it is

desirable to keep � smaller than �. On the other

hand, for the safety of critical systems such as

nuclear power plants, one might be more willing

to tolerate a false positive alarm to have a higher

degree of safety assurance. In this case, it is not

uncommon to specify � larger than �.

3.2 Sequential Probability Ratio Test

Using a SPRT, S(b, a), the hypothesis test stated

in Equation (8) is reformulated as follows

(Ghosh, 1970);

Record a sequence of observations fxig

ði ¼ 1, 2, . . .Þ successively, and at stage n:

ð1Þ accept Ho, if Zn � b;

ð2Þ reject Ho, if Zn � a;

ð3Þ continue observing data, if b � Zn � a:

ð12Þ

where the transformed random variable Zn is the

natural logarithm of the probability ratio at

stage n (it should be clear by now why this test is

called a sequential probability ratio test):

Zn ¼ ln
f ðXnj�1Þ

f ðXnj�oÞ
for n � 1 ð13Þ

Without any loss of generality, Zn is defined zero

when f ðXnj�1Þ ¼ f ðXnj�oÞ ¼ 0: b and a are the two

stopping bounds for accepting and rejecting Ho,

respectively, and they can be estimated by the

following Wald approximations (Wald, 1947):

b ffi ln
�

1� �
and a ffi ln

1� �

�
ð14Þ

Although closed form solutions of a and b are

available for several probability models, it has

been a standard practice to employ Equation (14)

to approximate the stopping bounds in all

practical applications. The continuation region

b � Zn � a is called the critical inequality of

S(b, a) at stage n.

In many practical problems, it is often more

realistic to formulate the hypothesis test as discri-

mination between two one-sided hypotheses:

Ho : � � �o, H1 : � � �1, �o < �1 ð15Þ
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The criteria in Equation (10) are now equivalent to:

ð1Þ the test is closed;

ð2Þ 1�Qð�Þ � �, for � � �o;

ð3Þ Qð�Þ � �, for � � �1:

ð16Þ

Ghosh (1970) shows that the previous SPRT

shown in Equation (12) also provides an optimal

solution to this hypothesis test defined in

Equation (15).

3.3 Application to Normal Distributions

In the damage detection problem presented, the

main interest is to examine how the probability

distribution function of the residual errors broad-

ens as data are recorded under a damaged

condition of a system. Therefore, the following

hypothesis test is constructed using the standard

deviation of the residual error as the parameter in

question:

Ho : � � �o, H1 : � � �1, 0 < �o < �1 ð17Þ

Here, when the standard deviation of the residual

errors, �, is equal to or less than a user specified

standard deviation value �o, the system in ques-

tion is considered undamaged. On the other

hand, when � becomes equal to or larger than

the other user specified standard deviation �1, the
system is suspected to be damaged. It should be

noted that the selection of �o and �1 is structure-

dependent, and it might be necessary to use

training data sets to establish these two decision

boundaries. Obviously, the more data become

available for training, the better diagnosis results

are obtained. However, there is no minimum

training size requirement for the SPRT. One can

even assign initial values of �o and �1 based on

engineering judgments and experiences, and sub-

sequently adjust these values as more data

becomes available. Alternatively, the probability

density function (PDF) of the extracted feature

can be first approximated using either parameter

or nonparametric estimation techniques, and the

�o and �1 values associated with a certain

confidence interval can be assigned.

If modified observations fzigði ¼ 1, 2, . . .Þ are

defined as follows;

z1 ¼ ln
f ðX1j�1Þ

f ðX1j�oÞ
and zi ¼ ln

f ðXij�1Þf ðXi�1j�oÞ

f ðXij�oÞf ðXi�1j�1Þ

ð18Þ

then, Zn becomes:

Zn ¼
Xn
i¼1

zi ð19Þ

Assuming that Xn has a normal distribution with

mean � and standard deviation �, zi can be

related to xi:

zi ¼
1

2
ð��2
o � ��2

1 Þðxi � �Þ2 � ln
�1
�o

ð20Þ

In a graphical representation of a SPRT S(b, a),

Zn, which is the cumulative sum of the trans-

formed variable zi, is continuously plotted against

the two stopping bounds b and a. It should be

noted that the mean � of the distribution is

assumed to be known. Even when � is unknown,

the aforementioned procedure is still valid if xi is

replaced by yi:

yi ¼
Xi
j¼1

xj � ixiþ1

 !� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iði þ 1Þ

p
for i ¼ 1, 2, . . .

ð21Þ

It can be shown that now fyig has i.i.d normal

distribution with zero mean and the same stan-

dard deviation as fxig.

4 Extreme Value Statistics

In the previous section, the SPRT procedure is

formulated assuming that the sampled data have

a normal distribution. However, the assumption

of normality might impose potentially misleading

behavior on the extreme values of the data,

namely, those points in the tails of the distribu-

tion. An alternative approach can be based on

extreme value statistics. This branch of statistics
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was developed to specifically model behavior in

the tails of the distribution of interest.

In fact, there is a large body of statistical

theory that is explicitly concerned with modeling

the tails of distributions, and these statistical

procedures are applied to the current problem of

damage classification. The relevant field is

referred to as extreme value statistics, a branch of

order statistics. There are many excellent text-

books and monographs in this field. Some are

considered classics (Gumbel, 1958; Galambos,

1978), and others are more recent (Embrechts

et al., 1997; Kotz and Nadarajah, 2000). Castillo

(1987) is notable in its concern with engineering

problems in fields like meteorology, hydrology,

ocean engineering, pollution studies, strength of

materials, etc. Although extreme value statistics

has been widely applied, there has been little appli-

cation of these techniques to damage detection.

The major problems with modeling the

normal condition of a system are that the

functional form of the distribution is unknown

and that there are an infinite number of candi-

date distributions that may be appropriate for the

prediction applications. The researcher must

choose among various distributions and then

estimate parameters based on training data. This

process is largely subjective. If extreme value

statistics is applied to the tails instead of working

with the central statistics of a distribution, there

are only three candidate distributions for the tails

and the problem of model selection and para-

meter estimation becomes more objective.

Suppose that one is given a vector of samples

ðx1, . . . ,xmÞ from an arbitrary parent distribution.

The most relevant statistic for studying the tails of

the parent distribution is the maximum operator,

maxðx1, . . . ,xmÞ, which selects the point of the

maximum value from the sample vector. Note

that this statistic is relevant for the right tail of a

univariate distribution only. For the left tail, the

minimum should be used. The pivotal theorem of

extreme value statistics (Fisher and Tippett, 1928)

states that in the limit as the number of vector

samples tends to infinity, the induced distribution

on the maxima of the samples can only take one

of three forms: Gumbel, Weibull, or Frechet. The

rest of this section will be concerned with

elaborating on this fact.

If the values of the sequence ðx1, . . . , xmÞ are

arranged in ascending order, the rth element of

this sequence xr is called the rth order statistic.

The basic question, which now arises is, what are

the distributions of the order statistics, in parti-

cular, the minimum, x1, and the maximum, xm.

Following Castillo (1987), let nmðxÞ be the

number of samples for which xj � x: Each time

one chooses a value xj from the sample, one is

conducting a Bernoulli experiment, an experiment

that has one of two outcomes, with a probability

FðxÞ, the cumulative distribution function (CDF),

that xj � x, and the complementary probability,

1� FðxÞ, that xj > x. The CDF of nmðxÞ is,

therefore, a binomial distribution with F kðxÞ

denoting the probability of success:

FnmðxÞðrÞ ¼ PðnmðxÞ � rÞ

¼
Xr
k¼0

m

k

� 	
F kðxÞ½1� FðxÞ�m�k

ð22Þ

Now, because the event ðxr � xÞ is basically the

same as the event ðnmðxÞ � rÞ,Pðxr � xÞ is identi-

cal to PðnmðxÞ � rÞ ¼ 1� PðnmðxÞ < rÞ. In addi-

tion, it follows that FxrðxÞ ¼ 1� FnmðxÞðr� 1Þ or

FxrðxÞ ¼ Pðxr � xÞ ¼
Xm
k¼r

m
k

� 	
F kðxÞ½1� FðxÞ�m�k

ð23Þ

If one is concerned with the maximum of the

sample, the relevant order statistic is xm and the

relevant distribution is:

FxmðxÞ ¼ F
mðxÞ ð24Þ

Concentrating now on the maximum, let m! 1.

Then, the limit distribution for the maximum will

satisfy:

lim
m!1

F mðxÞ ¼
1

0



If FðxÞ ¼ 1

If FðxÞ < 1
ð25Þ

This distribution does not make sense because a

CDF is developed on the assumption that it is

continuous, but here the limit is discontinuous.

The way around this discontinuity is to normalize
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the independent variable with a sequence of

constants ðx! am þ bmxÞ in such a way that;

lim
m!1

F mðam þ bmxÞ ¼ FMðxÞ ð26Þ

where FMðxÞ is a nondegenerate limit function. In

fact, it is required that FMðxÞ be continuous.

Fisher and Tippett (1928) state that, in the

limit as the number of vector samples tends to

infinity, the induced distribution FMðxÞ in

Equation (26) can only take one of the following

three forms;

Frechet: FMðxÞ ¼
exp �

�

x� �

� 	�
" #

if x � �

0 otherwise

8><
>:

ð27Þ

Weibul: FMðxÞ ¼

1

exp �
�� x

�

� 	�
" # if x � �

otherwise

8><
>:

ð28Þ

Gumbel:

FMðxÞ ¼ exp � exp �
x� �

�

� 	� �
�1 < x < 1

� > 0

ð29Þ

where �, �, and � are the model parameters,

which should be estimated from the data, and

‘‘exp’’ is an exponential operator. FMðxÞ is, in

fact, a cumulative density function (CDF) of

maxima and the subscript ‘‘M ’’ is used to denote

that the distribution is for the maxima. Note that

these distributions are relevant for the right tail

of a univariate distribution only. For the left tail,

similar distributions for the minimum can be

obtained.

Now given samples of maximum data from a

parent population, it is possible to select an

appropriate limit distribution and fit a parametric

model to the data. It is also possible to fit models

to portions of the parent distribution’s tails as

these models are equivalent in the tail to the

appropriate extreme value distribution. Once the

appropriate model is obtained, the SPRT can

be reformulated using the known distribution

type of the extreme values. In this paper, the

discussion is limited to the Gumbel distribution

for maxima but similar derivations can be devel-

oped for the other extreme distributions.

4.1 A Sequential Probability Ratio Test
using a Gumbel Distribution for Maxima

Now, the SPRT is extended to the extreme values

of the parent distribution, i.e., the distribution of

the residual error. In the previous section, the

SPRT is formulated assuming that the residual

error has a normal distribution. However, slight

deviation from the normality assumption of the

parent distribution might lead to larger errors for

the extremes resulting in erroneous false positive/

negative indications of damage. To avoid this

problem, the SPRT is reformulated using the

probability distribution of extreme values. Because

the maxima of a normal distribution are known to

have a Gumbel distribution and the residual error

distribution of the experimental study presented

later is close to a normal distribution, the deriva-

tion presented here focuses on incorporating a

Gumbel distribution for maxima values into the

SPRT. Similar formulations can be easily derived

for other types of extreme value distributions and

for minima values.

Similar to Equation (17), the following

hypothesis test is constructed using the standard

deviation of the maxima as the parameter in

question:

Ho : �M ��M, o, H1 : �M � �M, 1,

0 < �M, o < �M, 1

ð30Þ

Now, �M is the standard deviation of the residual

error maxima, and the subscript ‘‘M ’’ denotes a

quantity related to the maxima. �M, o is a user

specified lower limit of the standard deviation for

the undamaged condition, and �M, 1 is the other

user specified upper limit for the damaged condi-

tion. It is observed that the change of the maxima

distribution’s standard deviation is monotonically

related to the change of the parent distribution’s

standard deviation. Therefore, an indirect statisti-

cal inference on the standard deviation of the
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parent distribution (the distribution of the residual

errors) is conducted by examining the standard

deviation of the maximum values.

It can be shown that the model parameters, �
and �, of the Gumble distribution are related to

its mean �M and standard deviation �M (Castillo,

1987):

� ¼

ffiffiffi
6

p


�M and � ¼ �M � 0:57772� ð31Þ

If the distribution of the maxima is preprocessed

such that the mean value is zero, Equation (18)

can be rewritten in terms of � and �;

z1 ¼ ln
fMðX1j�1, �1Þ

fMðX1j�o, �oÞ

and zi ¼ ln
fMðXij�1, �1ÞfMðXi�1j�o, �oÞ

fMðXij�o, �oÞfMðXi�1j�1, �1Þ

ð32Þ

where �o and �o are parameters related to the null

hypothesis Ho, and �1 and �1 correspond to the

alternative hypothesis H1. Again, the subscript

‘‘M ’’ denotes a quantity related to the maxima.

For the original SPRT, Xn is defined as the

accumulated sample points up to stage n [see

Equation (7)]. When the SPRT is applied to the

maximum values like in Equation (32), Xn ¼

ðx1, . . . ,xnÞ becomes a collection of the maximum

values instead. That is, xi in Xn now becomes

a maximum value obtained from a sample size

of m. If fxig are i.i.d, fMðXij�1, �1Þ becomes

fMðx1j�1,�1Þ� fMðx2j�1,�1Þ� � � �� fMðxij�1,�1Þ and

Equation (32) can be further simplified as follows:

zi ¼ ln
fMðxij�1, �1Þ

fMðxij�o, �oÞ
for i ¼ 1, 2, . . . , n ð33Þ

Next, the PDF of the Gumbel distribution for

maximum is obtained by differentiating the CDF

presented in Equation (29):

fMðxÞ ¼
dFMðxÞ

dx
ð34Þ

¼
1

�
exp �

x� �

�

� 	
exp � exp �

x� �

�

� 	� �

By substituting Equation (34) into Equation (33),

zi can be related to xi:

zi ¼ � ln
�1
�o

þ
xi � �o

�o

� 	
�

xi � �1
�1

� 	

þ exp �
xi � �o

�o

� 	
� exp �

xi � �1
�1

� 	 ð35Þ

By relating � and � to �M as shown in Equation

(31), Equation (35) can be further simplified as

follows:

zi¼� ln
�1
�o

þ
ffiffiffi
6

p ð��1
o ���1

1 Þxi

þexp �
xiþ0:4504�offiffiffi

6
p

�o=

� 	
� exp �

xiþ0:4504�1ffiffiffi
6

p
�1=

� 	
ð36Þ

Finally, the cumulative sum of the transformed

variable Zi is monitored against the two stopping

bounds, a and b.

4.2 A SPRT using Extreme Value
Statistics with a Known Gaussian
Parent Distribution

In this section, the SPRT is modified assuming

that the parent distribution of the maxima has a

known Gaussian distribution. Equation (24)

shows that when the parent distribution has a

CDF FðxÞ, the CDF for the maxima extracted

from a sample size m becomes F mðxÞ. Then, the

CDF and the associated PDF of maxima are

obtained;

FMðxÞ ¼ F mðxÞ and fMðxÞ ¼ mF m�1ðxÞf ðxÞ ð37Þ

where FMðxÞ and fMðxÞ are the CDF and PDF of

the maxima values, and FðxÞ and f ðxÞ are the

CDF and PDF of a normal distribution, respec-

tively. By substituting Equation (37) into

Equation (18), the following zi statistic is

obtained:
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zi ¼ ln
fMðxij�1Þ

fMðxij�oÞ
¼ ln

nF n�1ðxij�1Þf ðxij�1Þ

nF n�1ðxij�oÞf ðxij�oÞ

¼
1

2
ð��2
o � ��2

1 Þðxi � �Þ2 � ln
�1
�o

þ ðm� 1Þ ln
Fðxij�1Þ

Fðxij�oÞ

ð38Þ

Note that, when the sampling size for the

maxima becomes one ðm ¼ 1Þ, Equation (38)

reduces back to Equation (20).

5 Numerical Examples

In this section, the performances of three varia-

tions of the SPRT are compared for different

types of parent distributions. The three variations

of the SPRT include (1) the conventional SPRT

with the normality assumption of data sets

[Equation (20)], (2) a SPRT using a Gumbel

distribution for maxima [Equation (36)], and (3)

a SPRT using extreme value statistics with a

known Gaussian parent distribution [Equation

(38)]. Hereafter, these techniques are referred to

as SPRT-1, SPRT-2, and SPRT-3, respectively.

These three SPRT techniques are applied to data

sets generated from Gaussian, lognormal, and

Gamma distributions.

For a given distribution type of population,

two data sets are randomly generated. The first

set of data consists of 8192 data points and has a

known standard deviation of �x. The second data

set also consists of 8192 data points and has a

modified standard deviation of �y ¼ F�x. Here, F

is a multiplication factor varying from 0.90 to

1.00, 1.10, 1.15, 1.45, 1.50, 1.60 and 1.70. The

first data set simulates the residual errors from

the initial intact condition of the structure, and

the second data set represents the residual errors

from a new structural condition of the structure.

The damage classification problem is cast in

such a way that, if the standard deviation of the

new signal �y becomes above a predetermined

upper limit 1:4�x, then the new signal is consid-

ered from a damaged state of the system. On the

other hand, if �y is less than the other predeter-

mined lower limit 1:2�x, the new signal is then

assumed to be from the undamaged condition.

Otherwise ðwhen 1:2�x < �y < 1:4�xÞ, the damage

classifier cannot make a confident decision

regarding the current state of the structure and

continues collecting additional data. In the

numerical examples, the upper and lower limits,

1:2�x and 1:4�x, are selected rather arbitrarily. In

real applications, the sensitivity of the residual

errors with respect to damage of interest might be

first examined to establish these two limits. This

sequential hypothesis test can be stated in a

simplified format:

Ho : �y � 1:2�x and H1 : �y � 1:4�x ð39Þ

Because the statistical inference in Equation (39)

is imposed only on the unknown standard devia-

tion �y, it is assumed that the mean of the signals

is zero. Therefore, the mean of each signal is

subtracted from the signal.

When the SPRT is combined with maximum

value statistics (SPRT-2 and SPRT-3), a moving

window of 16 time samples is stepped through the

8192 points of each data set to generate 512

maxima for each condition. That is, the sample

size for the maximum value selection is set to be

16 (m¼ 16). For all numerical examples, the upper

bounds of Type I and II errors are set to 0.001.

The corresponding two bounds are b¼� 6.9 and

a¼ 6.9, respectively. It should be noted that

because the parent distribution is assumed

unknown for SPRT-2, the hypothesis test in

Equation (39) cannot be performed and an alter-

native hypothesis test is conducted on the stan-

dard deviation of the ‘‘maximum’’ values;

Ho : �M, y � 1:2�M, x and H1 : �M, y � 1:4�M, x

ð40Þ

where �M, x and �M, y are the standard deviations

of the ‘‘maximum’’ values for the first and second

sets of signals, respectively.

Three different parent distribution types are

investigated in this section: normal, lognormal,

gamma distributions. These three distributions

are selected because the maxima of all three

distributions have Gumbel distributions. In real

applications, because the distribution type of the

parent data set is unknown, the distribution type

of the maximum values should be first chosen.
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Because there are only three possible choices for

the extreme value statistics, this step is straight-

forward and is well explained in Castillo (1987).

5.1 Gaussian Parent Distribution

In the first example, the parent distribution is

assumed normal. Then, the three SPRTs are

applied to the numerical data generated from

normal distributions. Table 1 summarizes the

results of the sequential hypothesis testing. Each

entry in Table 1 has three numbers. The first

number denotes the number of tests accepting the

right hypothesis, and the second number denotes

the number of hypothesis tests rejecting the right

hypothesis. The last one is the number of cases

where the SPRT cannot draw decisions based on

the given data sets. For example, when F¼ 1.10,

Table 1 reports that SPRT-2 accepts the right

null hypothesis 63 times out of 100 simulations,

and rejects the correct hypothesis 16 times and no

decision is made for the remaining 21 cases.

As expected, SPRT-1 and SPRT-3, which

are based on the normality assumption of the

parent distribution, have accepted the correct

hypothesis 100% of time. However, SPRT-2 with

the Gumbel distribution of the maxima has

several misclassifications near the lower decision

boundary (when F¼ 1.10 and 1.15). These mis-

classifications are mainly caused by the discre-

pancy between the stated hypothesis test and the

actual hypothesis test conducted for SPRT-2. The

original hypothesis test is supposed to be per-

formed on the standard deviation of the ‘‘parent

distribution’’. However, because the parent dis-

tribution type is unknown for SPRT-2, the actual

hypothesis test is conducted on the standard

deviation of the ‘‘extreme distribution’’. There-

Figure 1 A typical damage classification result for data sets from a normal distribution, (Correct decision:
accepting H0): (a) shown from 1 to 4000 points; (b) shown from 1 to 600 points.

Table 1 Damage classification results for normal distribution data.

Hypo Ho H1

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70

SPRT-1 100/0/0* 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0
SPRT-2 100/0/0 100/0/0 63/16/21 31/47/22 100/0/0 100/0/0 100/0/0 100/0/0
SPRT-3 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0

*The first number denotes the number of accepting the right hypothesis, and the second number denotes the number of rejecting the correct hypothesis.
The last one is the number of cases where the SPRT cannot draw decisions based on the given data sets. For example, 100/0/0 means that, out of 100
simulations, 100 cases are correctly assigned to the true hypothesis and there were no misclassification nor undecided cases.
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fore, caution should be paid when the classifica-

tion results in Table 1 are compared for the three

different SPRTs.

Figure 1 shows the typical results of the

sequential tests. When the Z statistic goes below

the lower bound at b¼� 6.9, the null hypothesis

is accepted. On the other hand, when the Z

statistic becomes larger than the upper bound

a¼ 6.9, the null hypothesis is rejected and

the alternative hypothesis is accepted. In this

particular case shown in Figure 1, accepting the

null hypothesis is the correct answer, and all

sequential tests make the right classification. It is

shown that SPRT-1 generally comes to a decision

earlier than the other two sequential tests. Because

the extreme values for SPRT-2 and SPRT-3 are

sampled at every 16th point from the parent data,

it is intuitively expected that the statistical infer-

ence using SPRT-1 will come to a conclusion

faster than those using SPRT-2 or SPRT-3.

5.2 Lognormal Parent Distribution

In the second numerical example, the parent

distribution is assumed lognormal instead of

normal. A random variable x has a lognormal

distribution if the natural logarithm of x is

normal (Ang and Tang, 1975). For a lognormal

distribution, the PDF of x becomes;

f ðxÞ ¼
1ffiffiffiffiffiffi
2

p
sx

exp �
1

2

lnx� �

s

� 	2
" #

ð41Þ

where ln x is the natural logarithm of x. � and s

are the mean and standard deviation of ln x,

respectively. For this simulation, �¼ 1.0 and

s¼ 0.5 are assumed. The associated lognormal

density function is displayed in Figure 2. The

skewness and kurtosis of this distribution

are 1.74 and 8.45, respectively. Note that, for

all normal distributions, the values of the skew-

ness and kurtosis should be 0.0 and 3.0, respec-

tively (Wirsching et al., 1995). Therefore, the

departure of the skewness and kurtosis values

from 0.0 and 3.0 indicates non-Gaussian nature

of the data.

The analysis results are summarized in

Table 2. Although the formulation of SPRT-1 is

based on the normality assumption, SPRT-1

surprisingly performs well even for a lognormal

distribution. The performance of SPRT-2 is

comparable with the previous result of the

normal case. Again, the several misclassifications

of SPRT-2 in Table 2 are mainly attributed to

the difference between the stated and actual

hypothesis tests. SPRT-3 completely misses the

true hypothesis when F¼ 1.10 and 1.15. It seems

that the incorrect assumption of the parent

distribution produces accumulated errors in the

Table 2 Damage classification results for lognormal distribution data.

Hypo Ho H1

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70

SPRT-1 100/0/0* 100/0/0 100/0/0 99/1/0 100/0/0 100/0/0 100/0/0 100/0/0
SPRT-2 100/0/0 100/0/0 93/1/6 66/15/19 100/0/0 100/0/0 100/0/0 100/0/0
SPRT-3 100/0/0 11/89/0 0/100/0 0/100/0 100/0/0 100/0/0 100/0/0 100/0/0

*The first number denotes the number of accepting the right hypothesis, and the second number denotes the number of rejecting the correct hypothesis.
The last one is the number of cases where the SPRT cannot draw decisions based on the given data sets. For example, 100/0/0 means that, out of 100
simulations, 100 cases are correctly assigned to the true hypothesis and there were no misclassification nor undecided cases.

Figure 2 A lognormal density function with �¼ 1.0 and
s¼ 0.5.
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extreme statistics leading the results of SPRT-3

astray. As shown in Figure 3, SPRT-1 again

makes the fastest decision among all three

SPRTs, and SPRT-2 takes the longest time to

select a hypothesis.

5.3 Gamma Parent Distribution

Finally, the sequential tests are applied to data

sets simulated from a gamma parent distribution.

A gamma distribution is often used to describe

the kth occurrence of an event, which constitutes

a Poisson process with a mean rate of occurrence,

� (Ang and Tang, 1975). The corresponding

density function is defined as;

f ðxÞ ¼
�ð�xÞk�1

�ðkÞ
exp ½��x� x � 0 ð42Þ

where �ðkÞ is the gamma function. Note that the

exponential and chi-square distributions are spe-

cial cases of the gamma distribution, and

obtained by setting k¼ 1.0 and �¼ 0.5 in

Equation (42), respectively. The gamma distribu-

tion is skewed to the right for a small value of

k. As the degrees of freedom k increases the

gamma distribution converges to the normal

distribution. In this example, the sample data are

generated from a gamma distribution with k¼ 3

and �¼ 0.2. This gamma distribution has the

skewness value of 1.15 and kurtosis of 5.00,

respectively. The associated PDF is plotted in

Figure 4.

Hypothesis results similar to the case of the

lognormal distribution are obtained in Table 3

and Figure 5. For all three distribution types

considered in the examples, SPRT-1 outperforms

SPRT-2 and SPRT-3. Humenik and Gross (1990)

report a similar observation that the SPRT is

Table 3 Damage classification results for gamma distribution data.

Hypo Ho H1

F 0.90 1.00 1.10 1.15 1.45 1.50 1.60 1.70

SPRT-1 100/0/0* 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0 100/0/0
SPRT-2 100/0/0 100/0/0 99/1/0 83/1/16 98/0/2 100/0/0 100/0/0 100/0/0
SPRT-3 100/0/0 93/7/0 0/100/0 0/100/0 100/0/0 100/0/0 100/0/0 100/0/0

*The first number denotes the number of accepting the right hypothesis, and the second number denotes the number of rejecting the correct hypothesis.
The last one is the number of cases where the SPRT cannot draw decisions based on the given data sets. For example, 100/0/0 means that, out of 100
simulations, 100 cases are correctly assigned to the true hypothesis and there were no misclassification nor undecided cases.

Figure 3 A typical damage classification result for data
sets from a lognormal distribution (Correct decision:
accepting H0).

Figure 4 A gamma density function with k¼ 3.0 and
�¼ 0.2.
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robust in the sense that the SPRT works well

even if the underlying distribution is not exactly

Gaussian. Again, the results of SPRT-3 seem

unreliable especially near the lower decision

bound. Therefore, the application of SPRTs to

the subsequent experimental data is limited to

SPRT-1 and SPRT-2.

6 Experimental Test

In order to validate the applicability of the pro-

posed technique to structural health monitoring

problems, the SPRT analysis combined with time

series analysis and extreme value statistics

is applied to acceleration time history signals

measured from a three-story building model

constructed in a laboratory environment. This

test structure is built as part of Los Alamos

Dynamics Summer School Program (http://

www.lanl.gov/projects/dss), where upper level

undergraduate students and first year graduate

students spend 8 weeks at Los Alamos National

Laboratory attending lectures and working on

several hands-on experiments. Different damage

detection approaches are also demonstrated using

this test structure (Adams and Farrar, 2002;

Worden et al., 2002).

6.1 Description of a Test Structure

The three-story frame structure model is shown in

Figure 6. The structure consists of Unistrut

columns and aluminum floor plates. The floors

are 1.3 cm-thick (0.5 in.) aluminum plates with

two-bolt connections to brackets on the Unistrut.

The base is a 3.8 cm-thick (1.5 in.) aluminum plate.

Support brackets for the columns are bolted to this

Figure 5 A typical damage classification result for data
sets from a gamma distribution (Correct decision:
accepting H0).  

Damage 2 

Damage 1 

 

  

Column support 
bracket 

Isolator 

24.0” x 30.0” 

Base plate 

18.5”

61.125” 

8.25”

Floor 1  

Floor 2  

Floor 3  

(1.553 m) 

(0.470 m) 

(0.210 m) 

(0.610 m x 0.762 m) 

Unistrut 
Column 

Figure 6 A three-story frame structure with dimension
and damage locations.
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plate and hold the Unistrut columns. The details

of these joints are shown in Figures 7 and 8.

The floor layout from the top of the structure is

shown in Figure 9. All bolted connections are

tightened to a torque value of 0.7Nm (60 in. lbs)

in the undamaged state. Four Firestone air mount

isolators, which allow the structure to move freely

in horizontal directions, are bolted to the bottom

of the base plate. The isolators are inflated to

140 kPa gauge (20 psig) and then adjusted to allow

the structure to sit level with the shaker.

The structure is instrumented with 24 piezo-

electric single-axis accelerometers, two per joint

as shown in Figure 9. The accelerometers are

numbered from the corner A to D counterclock-

wise and from the top floor to the first floor.

Accelerometers are mounted on the aluminum

blocks that are attached by hot glue to the plates

and columns. This configuration allows relative

motion between the column and the floor to

be monitored. The nominal sensitivity of each

accelerometer is 1V/g. The shaker is coupled to

the structure by a 15 cm long (6 in.), 9.5mm

diameter (0.375 in.) stinger connected to a tapped

hole at the midheight of the base plate. The shaker

is attached at corner D of the base floor (below

floor 1), as shown in Figure 6, so that both

translational and torsional motions can be excited.

The RMS voltage of the shake was fixed at 2V,

and random signals were generated from

the shaker. A 2.25mV/N (10mV/lb) force transdu-

cer is also mounted between the stinger and the

base plate. This force transducer is used to

measure the input to the base of the structure. A

commercial data acquisition system controlled

from a laptop PC is used to digitize the acceler-

ometer and force transducer analog signals. The

data sets that were analyzed in the feature extrac-

tion and statistical modeling portion of the study

were the acceleration time histories. Each time

signal gathered consisted of 8192 points and was

sampled at 1600Hz.

Two damage cases are investigated in this

experiment. The first damage is introduced at the

corner A of the first floor (Damage 1) and

the second damage is placed at the corner C of the

third floor (Damage 2). These two damage loca-

tions are shown in Figure 6. For each damage

case, four bolts at each joint are loosened until

hand tight, allowing relative movement between

the floor plate and column. After each damage

case, all the bolts were tightened again to the

initial torque of 0.7Nm (60 in. lbs). Five time

series are measured from the initial undamaged

case, and these time series are used for training

and constructing the reference database. Five time

series are recorded under each damage cases, and

additional five time series are obtained after

Figure 9 Floor layout as viewed from above.

Figure 7 A bolted joint of the test structure.

Figure 8 The connection to the base plate.
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tightening all bolts to the initial torque values.

These time series are used for testing the proposed

SPRT procedure. That is, a total of 20 time series

are used for this experiment.

6.2 Damage Classification Results

Instead of independently analyzing 24 time his-

tories from each accelerometer, the point-by-

point difference between time series from the two

adjacent accelerometers at individual joint is first

computed. Then, the resulting 12 time series

corresponding to each joint are used for the

AR-ARX modeling. The order r in the AR model

of Equation (2) is set to 25, and the p and q orders

for the ARX model of Equation (5) are set to 20

and 5, respectively. Satisfactory prediction error,

the standard deviation of which is mostly less

than 10% of the original signal, is achieved using

the AR-ARX model for all the reference signals

indicating that the selected AR-ARX model

appropriately characterizes the underlying

dynamic system of each signal readings.

Next, SPRT-1 and SPRT-2 are applied

to the damage-sensitive feature obtained from the

AR-ARX modeling, i.e., the residual errors. The

Type I & II errors are set to 0.001 as before.

The formulation of the SPRT here is based on the

premise that, when a system being monitored

undergoes a structural change such as damage, a

signal measured under the new structural condi-

tion will be significantly different from the signal

obtained from the initial undamaged case.

Therefore, when a time prediction model is con-

structed using the baseline undamaged time signal,

the prediction error of the newly obtained signal,

which is again from a damaged case, will depart

from that of the baseline signal. In particular, the

prediction error of the new signal is expected to

increase. Based on this observation, the sequential

hypothesis test for SPRT-1 is cast as follows:

Ho : � � �o, H1 : � � �1, 0 < �o < �1 ð43Þ

In this particular example, �0 and �1 are set

to 0.40 and 0.42, respectively. Note that the

establishment of the �0 and �1 values is based on

the observation of actual damage cases. That is,

changes of the standard deviation are first mon-

itored for at least several damage cases to select

the appropriate �0 and �1 values. This selection

of the �0 and �1 values categorizes the proposed

method as a supervised learning method. In a

Table 4 Damage classification results using SPRT-1.

Test Case
Ch1–
Ch2

Ch3–
Ch4

Ch5–
Ch6

Ch7–
Ch8

Ch9–
Ch10

Ch11–
Ch12

Ch13–
Ch14

Ch15–
Ch6

Ch17–
Ch18

Ch19–
Ch20

Ch21–
Ch22

Ch23–
Ch24

Undamaged 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Damage 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

Damage 2 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

.The zero ‘0’ denotes that the null hypothesis is accepted indicating no damage is present at that joint, and the unity ‘1’ denotes that the null hypothesis
is rejected and the corresponding joint is damaged. The shaded areas represent the locations of the acutally damaged joints, and the hypothesis results
in these shaded areas should ideally correspond to 1. The hypothesis results should be zero otherwise.
.For each undamaged and damage cases, five time series are recorded, and the corresponding damage classification results are shown.
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similar fashion, the sequential hypothesis test for

SPRT-2 is cast as follows;

Ho : �M � �M, o, H1 : �M � �M, 1,

0 < �M, o < �M, 1

ð44Þ

where �M, 0 and �M, 1 are set to 0.24 and 0.26

based on a similar observation as before.

The results of damage classification using

SPRT-1 and SPRT-2 are reported in Tables 4

and 5. In both tables, the zero ‘0’ entity denotes

that the null hypothesis is accepted indicating

that no damage is present at that joint, and the

one ‘1’ entity denotes that the null hypothesis is

rejected and the corresponding joint is damaged.

The shaded areas in the tables represent the

locations of the actually damaged joints, and the

hypothesis results in these shaded areas should

ideally correspond to one. The hypothesis results

should be zero otherwise.

Briefly summarizing the results, SPRT-1 and

SPRT-2 demonstrate comparable performances.

Both SPRT-1 and SPRT-2 do not show any

false-positive indications of damage for all five

undamaged cases. For the first damage case

(Damage 1), the damaged joints are located at

the corner A on the first floor, and these joints

are associated with sensor readings from chan-

nels 17 and 18. Using SPRT-1 and SPRT-2, the

actual damage location is correctly revealed for

all five cases. For the second damage case

(Damage 2), where the bolts at the corner C on

the third floor are loosened, SPRT-1 indicates

that the adjacent joint at the corner D on the

same floor is most likely damaged. SPRT-2 also

suggests the existence of damage at the same

adjacent joint but correctly identifies the actually

damaged joint 3 times out of the five examined

time series. It should be noted that because the

probability distribution of the features used in

this specific experiment was inherently close to a

Gaussian distribution, there were no significant

differences between SPRT-1 and SPRT-2 ana-

lyses. In addition, the plot of Z statistic could

have oscillatory behavior. For instance, when

the system to be monitored is intact at the

beginning, the Z statistic continues to decrease.

Once damage initiates, the Z statistic starts to

increase (moves to the opposite direction) and

eventually crosses the upper threshold value

indicating damage. Furthermore, the more non-

stationary the system response is, the more

oscillatory the Z statistic becomes. However,

Table 5 Damage classification results using SPRT-2.

Test Case
Ch1–
Ch2

Ch3–
Ch4

Ch5–
Ch6

Ch7–
Ch8

Ch9–
Ch10

Ch11–
Ch12

Ch13–
Ch14

Ch15–
Ch6

Ch17–
Ch18

Ch19–
Ch20

Ch21–
Ch22

Ch23–
Ch24

Undamaged 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Damage 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

Damage 2 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0

.The zero ‘0’ denotes that the null hypothesis is accepted indicating no damage is present at that joint, and the unity ‘1’ denotes that the null hypothesis
is rejected and the corresponding joint is damaged. The shaded areas represent the locations of the acutally damaged joints, and the hypothesis results
in these shaded areas should ideally correspond to 1. The hypothesis results should be zero otherwise.
.For each undamaged and damage cases, five time series are recorded, and the corresponding damage classification results are shown.
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because the primary objective of using the SPRT

is to identify damage, the user is not concerned

with the fluctuation of the Z statistic. Once the

Z statistic goes across the upper threshold value,

inspection or repair of the system need to be

performed and the SPRT needs to be reset.

However, it would be interesting to introduce

some ‘‘weighting factor’’ to the Z statistic so

that the data corresponding to the undamaged

case of the structure are not weighed too much

before damage occurrence. Otherwise, it would

take a longer time for the Z statistic to response

to damage.

7 Conclusion

A unique integration of time series analysis,

statistical inference, and extreme value theory is

provided to address the issue of damage identifica-

tion. Time series analysis techniques, which are

solely based on the measured vibration signals, are

first employed to extract damage-sensitive features

for damage classification. While there had been

increasing interest in the field of structural health

monitoring, decisions as to whether a structure is

damaged or not tend to be made on the basis of

exceeding some heuristic threshold. In this study,

the sequential probability ratio test (SPRT) is

employed to provide a more principled statistical

tool for this decision-making procedure, excluding

unnecessary interpretation of the measured data

by users. Finally, the performance and robustness

of damage classification is improved by incorpor-

ating extreme values statistics of the extracted

features into the SPRT. The applicability of the

SPRT to structural health monitoring is demon-

strated using time signals measured from a three-

story frame structure tested in a laboratory envir-

onment. The framework of the proposed SPRT is

well suited for developing a continuous monitor-

ing system, and can be easily implemented on

digital signal processing (DSP) chips automating

the damage classification process.
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